+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

Abstract

General Description The MAX4822-MAX4825 8-channel relay drivers offer built-in kickback protection and drive $+3 \mathrm{~V} /+5 \mathrm{~V}$ nonlatching or dual-coil-latching relays. Each independent open-drain output features a 2.7Ω (typ) on-resistance and is guaranteed to sink $70 \mathrm{~mA}(\mathrm{~min})$ of load current. These devices consume less than $300 \mu \mathrm{~A}$ (max) quiescent current and have $1 \mu \mathrm{~A}$ output off-leakage current. A Zener-kickback-protection circuit significantly reduces recovery time in applications where switching speed is critical. The MAX4822/MAX4824 feature a unique power-save mode where the relay current, after activation, can be reduced to a level just above the relay hold-current threshold. This mode keeps the relay activated while significantly reducing the power consumption. The MAX4822/MAX4823 feature a 10 MHz SPITM-/ QSPITM_/MICROWIRE ${ }^{\text {TM }}$-compatible serial interface. Input data is shifted into a shift register and latched to the outputs when $\overline{\mathrm{CS}}$ transitions from low to high. Each data bit in the shift register corresponds to a specific output, allowing independent control of all outputs. The MAX4824/MAX4825 feature a 4-bit parallel-input interface. The first 3 bits (A0, A1, A2) determine the output address, and the fourth bit (LVL) determines whether the selected output is switched on or off. Data is latched to the outputs when $\overline{\mathrm{CS}}$ transitions from low to high. The MAX4822-MAX4825 feature separate set and reset functions, allowing turn-on or turn-off of all outputs simultaneously with a single control line. Built-in hysteresis (Schmidt trigger) on all digital inputs allows these devices to be used with slow-rising and falling signals, such as those from optocouplers or RC powerup initialization circuits. The MAX4822-MAX4825 are available in space-saving $4 \mathrm{~mm} \times 4 \mathrm{~mm}, 20-$ pin thin QFN packages. They are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ extended temperature range.

Applications

ATE Equipment

DSL Redundancy Protection (ADSL/VDSL/HDSL)
T1/E1 Redundancy Protection
T3/E3 Redundancy Protection
Industrial Equipment
Test Equipment (Oscilloscopes, Spectrum Analyzers)

SPI is a trademark of Motorola, Inc.
QSPI is a trademark of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.
__ Features

- Built-In Zener Kickback Protection for Fast Recovery
- Programmable Power-Save Mode Reduces Relay Power Consumption (MAX4822/MAX4824)
- 10MHz SPI-/QSPI-/MICROWIRE-Compatible Serial Interface
- Eight Independent Output Channels
- Drive +3V and +5V Relays
- Guaranteed 70mA (min) Coil Drive Current
- Guaranteed 5Ω (max) RoN
- $\overline{\text { SET }} / \overline{\text { RESET }}$ Functions to Turn On/Off All Outputs Simultaneously
- Serial Digital Output for Daisy Chaining
- Optional Parallel Interface (MAX4824/MAX4825)
- Low 300 1 A (max) Quiescent Supply Current
- Space-Saving, 4mm x 4mm, 20-Pin TQFN Package

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	PACKAGE CODE
MAX4822ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN-EP*	T2044-3
MAX4823ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN-EP*	T2044-3
MAX4824ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN-EP*	T2044-3
MAX4825ETP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	20 TQFN-EP*	T2044-3

*For maximum heat dissipation, packages have an exposed pad (EP) on the bottom. Solder exposed pad to GND.

Selector Guide

PART	INTERFACE	POWER SAVE
MAX4822	Serial	Yes
MAX4823	Serial	No
MAX4824	Parallel	Yes
MAX4825	Parallel	No

Pin Configurations appear at end of data sheet.

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

ABSOLUTE MAXIMUM RATINGS

Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
20-Lead Thin QFN (derate $16.9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$) .. 1350 mW Operating Temperature Range
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Soldering Temperature (10s)
$+300^{\circ} \mathrm{C}$

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{C}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Voltage	VCC			2.3		5.5	V
Quiescent Current	Icc	$\begin{aligned} & \text { lout_= } 0, \\ & \text { logic inputs }=0 \text { or } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	$\mathrm{V}_{C C}=3.6 \mathrm{~V}$		160	300	$\mu \mathrm{A}$
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		180	300	
Dynamic Supply Current	ID	fSCLK $=10 \mathrm{MHz}, \mathrm{CDOUT}=50 \mathrm{pF}$	$\mathrm{VCC}=3.6 \mathrm{~V}$		1.2		mA
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$		1.6		
Thermal Shutdown		Power-save disable threshold (Note 2)			+130		${ }^{\circ} \mathrm{C}$
		Output disable threshold (Note 3)		+150			
Power-On Reset		Transform from high voltage to low voltage		0.6	1.2	2.0	V
Power-On Reset Hysteresis					140		mV
DIGITAL INPUTS (SCLK, DIN, $\overline{\mathbf{C S}}$, LVL, A0, A1, A2, $\overline{\text { RESET, }} \overline{\text { SET }}$)							
Input Logic-High Voltage	V_{IH}	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		2.0			V
		$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V}$ to 5.5 V		2.4			
Input Logic-Low Voltage	VIL	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}$				0.6	V
		$\mathrm{V}_{\mathrm{CC}}=4.2 \mathrm{~V} \text { to } 5.5 \mathrm{~V}$			0.8		
Input Logic Hysteresis	VHYST				150		mV
Input Leakage Current	ILEAK	Input voltages = 0 or 5.5 V		-1.0	+0.01	+1.0	$\mu \mathrm{A}$
Input Capacitance	CIN				5		pF
DIGITAL OUTPUT (DOUT)							
DOUT Low Voltage	VOL	I SINK $=6 \mathrm{~mA}$			0.4		V
DOUT High Voltage	VOH	ISOURCE $=0.5 \mathrm{~mA}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.5 \end{gathered}$			V

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
RELAY OUTPUT DRIVERS (OUT1-OUT8)							
OUT_ Drive Voltage, Power-Save On (MAX4822)	VOUTPS_	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & (\text { Note 4) } \end{aligned}$	$P S=001$	$\begin{aligned} & 0.65 x \\ & V_{C C} \end{aligned}$	$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} 0.75 x \\ V_{C C} \end{gathered}$	V
			$P S=010$	$\begin{aligned} & 0.55 x \\ & V_{C C} \end{aligned}$	$\begin{aligned} & 0.6 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} 0.65 x \\ V_{C C} \end{gathered}$	
			PS $=011$	$\begin{aligned} & 0.45 x \\ & V_{C C} \end{aligned}$	$\begin{aligned} & 0.5 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} 0.55 x \\ V_{C C} \end{gathered}$	
			$P S=100$	$\begin{gathered} 0.35 x \\ V_{C C} \end{gathered}$	$\begin{aligned} & 0.4 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} 0.45 x \\ V_{C C} \end{gathered}$	
			$P S=101$	$\begin{gathered} 0.25 x \\ V_{C C} \end{gathered}$	$\begin{aligned} & 0.3 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} 0.35 x \\ V_{C C} \end{gathered}$	
			$P S=110$	$\begin{gathered} 0.15 x \\ V_{C C} \end{gathered}$	$\begin{aligned} & 0.2 x \\ & V_{C C} \end{aligned}$	$\begin{gathered} 0.25 x \\ V_{C C} \end{gathered}$	
			$P S=111$	$\begin{gathered} 0.05 x \\ V_{C C} \end{gathered}$	$\begin{aligned} & 0.1 \times \\ & V_{C C} \end{aligned}$	$\begin{aligned} & 0.15 x \\ & V_{C C} \end{aligned}$	
OUT_ Drive Voltage, Power-Save On (MAX4824)	VOUTPS_	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}$ (Note 4)		$\begin{aligned} & 0.35 x \\ & V_{C C} \end{aligned}$	$\begin{aligned} & 0.4 x \\ & V_{C C} \end{aligned}$	$\begin{aligned} & 0.45 x \\ & V_{C C} \end{aligned}$	V
OUT_ On-Resistance	Ron	$\mathrm{V}_{\text {cc }}=2.7 \mathrm{~V}, \mathrm{lout}_{-}=70 \mathrm{~mA}$			2.7	5.0	Ω
OUT_ Off-Leakage Current	ILEAK	Vout_ = VCC, all outputs off		-1		+1	$\mu \mathrm{A}$
Zener Clamping Voltage	$V_{\text {CLAMP }}$	Iout_ = 70mA (Note 5)		7.0	9	10.5	V
SPI TIMING (MAX4822/MAX4823)							
Turn-On Time (OUT_)	ton	From rising edge of $\overline{\mathrm{CS}}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=50 \mathrm{pF}$				1.0	$\mu \mathrm{s}$
Turn-Off Time (OUT_)	toff	From rising edge of $\overline{\mathrm{CS}}, \mathrm{R}_{\mathrm{L}}=50 \Omega$,$C_{L}=50 \mathrm{pF}$				3.0	$\mu \mathrm{s}$
SCLK Frequency	fsclk			0		10	MHz
Cycle Time	tch + tcl			100			ns
$\overline{\text { CS }}$ Fall-to-SCLK Rise Setup	tCSS			50			ns
$\overline{\mathrm{CS}}$ Rise-to-SCLK Hold	tCSH			50			ns
SCLK High Time	ter			40			ns
SCLK Low Time	tCL			40			ns
Data Setup Time	tDS			20			ns

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Data Hold Time	tDH		0			ns
SCLK Fall to DOUT Valid	tDo	$\begin{aligned} & 50 \% \text { of } S C L K \text { to }\left(V_{I H}, V_{I L} \text { of } D_{I N}\right), \\ & C_{L}=50 \mathrm{pF} \end{aligned}$		17	28	ns
Rise Time (DIN, SCLK, $\overline{\mathrm{CS}}, \overline{\mathrm{SET}}$, RESET)	tSCR	20% of $V_{C C}$ to 70% of $V_{C C}, C_{L}=50 p F$ (Note 6)			2	$\mu \mathrm{s}$
Fall Time (DIN, SCLK, $\overline{C S}$, $\overline{\mathrm{RESET}}, \overline{\mathrm{SET}})$	tSCF	20% of $V_{C c}$ to 70% of $V_{C C}, C_{L}=50 p F$ (Note 6)			2	$\mu \mathrm{s}$
$\overline{\text { RESET }}$ Minimum Pulse Width	trw		70			ns
$\overline{\text { SET }}$ Minimum Pulse Width	tsw		70			ns
$\overline{\mathrm{CS}}$ Minimum Pulse Width	tcsw		40			ns
PARALLEL TIMING (MAX4824/MAX4825)						
Turn-On Time	ton	From rising edge of $\overline{\mathrm{CS}}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=50 \mathrm{pF}$			1	$\mu \mathrm{s}$
Turn-Off Time	toff	From rising edge of $\overline{\mathrm{CS}}, \mathrm{R}_{\mathrm{L}}=50 \Omega$, $C_{L}=50 \mathrm{pF}$			3	$\mu \mathrm{s}$
LVL Setup Time	tLS		20			ns
LVL Hold Time	tLH		0			ns
Address to $\overline{\mathrm{CS}}$ Setup Time	tAS		20			ns
Address to $\overline{\mathrm{CS}}$ Hold Time	tah		0			ns
Rise Time (A2, A1, A0, LVL)	tSCR	20% of $V_{C c}$ to 70% of $V_{C C}, C_{L}=50 p F$ (Note 6)			2	$\mu \mathrm{s}$
Fall Time (A2, A1, A0, LVL)	tSCF	20% of $V_{C c}$ to 70% of $V_{C C}, C_{L}=50 p F$ (Note 6)			2	$\mu \mathrm{s}$
$\overline{\text { RESET Pulse Width }}$	trw		70			ns
$\overline{\text { SET Pulse Width }}$	tsw		70			ns
$\overline{\text { CS }}$ Minimum Pulse Width	tcsw		40			ns
POWER-SAVE TIMING (MAX4822/MAX4824)						
Power-Save Delay Time	tPS	Variation from typical value, $C_{L}=100 \mathrm{nF}$ (Note 7)	1.6	3.2	5.4	ms
Minimum PSAVE Low Time to Power-Save Reset	tPSR			2	3.5	ms

Note 1: Specifications at $-40^{\circ} \mathrm{C}$ are guaranteed by design and not production tested.
Note 2: Thermal shutdown disables power save from all channels to reduce power dissipation inside the device.
Note 3: Thermal shutdown turns off all channels.
Note 4: The circuit can set the output voltage in power-save mode only if IOUT \times RON < VOUTP.
Note 5: After relay turn-off, inductive kickback can momentarily cause the OUT_ voltage to exceed V_{CC}. This is considered part of normal operation and does not damage the device.
Note 6: Guaranteed by design.
Note 7: For other capacitance values, use the equation $t_{P S}=32 \times C$

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

 $\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

OUT_TURN-OFF DELAY TIME vs. SUPPLY VOLTAGE

INPUT-LOGIC THRESHOLD
vs. SUPPLY VOLTAGE

BACK EMF CLAMPING WITH
STANDARD 3V RELAY VCC = 3.3V

POWER-SAVE DELAY TIME vs. SUPPLY VOLTAGE

POWER-SAVE DELAY TIME
vs. CAPACITANCE

OUTPUT VOLTAGE vs. OUTPUT CURRENT IN POWER-SAVE MODE (PSAVE REGISTER = 111)

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

MAX4822/MAX4823 Pin Description

| PIN | | NAME | |
| :---: | :---: | :---: | :--- | :--- |
| MAX4822 | MAX4823 | | |

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

MAX4822/MAX4823 Pin Description (continued)

PIN		NAME	
MAX4822	MAX4823		
19	19	VCC	Input Supply Voltage. Bypass VCC to GND with a 0.1 $\mu \mathrm{F}$ capacitor.
20	20	$\overline{\text { SET }}$	Set Input. Drive $\overline{\mathrm{SET}}$ low to set all latches and registers high (all outputs are low impedance). $\overline{\text { SET }}$ overrides all parallel and serial control inputs. $\overline{\mathrm{RESET}}$ overrides $\overline{\mathrm{SET}}$ under all conditions.
EP	EP	EP	Exposed Pad. Connect exposed paddle to GND.

MAX4824/MAX4825 Pin Description

PIN		NAME	FUNCTION
MAX4824	MAX4825		
1	1	$\overline{\text { RESET }}$	Reset Input. Drive $\overline{\operatorname{RESET}}$ low to clear all latches and registers (all outputs are high impedance). $\overline{\mathrm{RESET}}$ overrides all other inputs. If $\overline{\mathrm{RESET}}$ and $\overline{\mathrm{SET}}$ are pulled low at the same time, then $\overline{R E S E T}$ takes precedence.
2	2	$\overline{\mathrm{CS}}$	Chip-Select Input. Drive $\overline{\mathrm{CS}}$ low to select the device. The $\overline{\mathrm{CS}}$ falling edge latches the output address (A0, A1, A2). The $\overline{\mathrm{CS}}$ rising edge latches level data (LVL).
3	3	LVL	Level Input. LVL determines whether the selected address is switched on or off. Logichigh on LVL switches on the addressed output. A logic-low on LVL switches off the addressed output.
4	4	A0	Digital Address 0 Input. (See Figure 3 for address mapping.)
5	5	A1	Digital Address 1 Input. (See Figure 3 for address mapping.)
6	6	A2	Digital Address 2 Input. (See Figure 3 for address mapping.)
7	7	GND	Ground
8	8	OUT8	Open-Drain Output 8. Connect OUT8 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.
9	9	OUT7	Open-Drain Output 7. Connect OUT7 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.
10, 16	10, 16	PGND	Power Ground. PGND is a return for the output sinks. Connect PGND pins together and to GND.
11	11	OUT6	Open-Drain Output 6. Connect OUT6 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.
12	12	OUT5	Open-Drain Output 5. Connect OUT5 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode
 MAX4824/MAX4825 Pin Description (continued)

PIN		NAME	FUNCTION
MAX4824	MAX4825		
13	-	PSAVE	Power-Save Control. Connect a timing capacitor from PSAVE to ground. The capacitor value determines power-save timing as explained under the Applications Information section. PSAVE can also be driven externally to control power-save mode asynchronously. When PSAVE is asserted high, the current through the coils is reduced to 60% of the initial nominal current value. To disable power-save mode in all channels, drive PSAVE low for at least 3ms after last output setting.
14	14	OUT4	Open-Drain Output 4. Connect OUT4 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.
15	15	OUT3	Open-Drain Output 3. Connect OUT3 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.
17	17	OUT2	Open-Drain Output 2. Connect OUT2 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.
18	18	OUT1	Open-Drain Output 1. Connect OUT1 to the low side of a relay coil. This output is pulled to PGND when activated, but otherwise is high impedance.
19	19	VCC	Input Supply Voltage. Bypass $\mathrm{V}_{\text {cc }}$ to GND with a $0.1 \mu \mathrm{~F}$ capacitor.
20	20	$\overline{\text { SET }}$	Set Input. Drive $\overline{\mathrm{SET}}$ low to set all latches and registers high (all outputs are low impedance). $\overline{\text { SET }}$ overrides all parallel and serial control inputs. $\overline{\text { RESET }}$ overrides $\overline{\text { SET }}$ under all conditions.
-	13	N.C.	No Connection. Not internally connected.
EP	EP	EP	Exposed Pad. Connect exposed paddle to ground.

Detailed Description

Serial Interface (MAX4822/MAX4823)

Depending on the MAX4822/MAX4823 device, the serial interface can be controlled by either 8 - or 16 -bit words as depicted in Figures 1 and 2. The MAX4823 does not support power-save mode, so the serial interface consists of an 8-bit-only shift register for faster control.
The MAX4822 consists of a 16-bit shift register and parallel latch controlled by SCLK and $\overline{\mathrm{CS}}$. The input to the shift register is a 16-bit word. In the MAX4822, the first 8 bits determine the register address and are followed
by 8 bits of data as depicted in Figure 1. Bit A7 corresponds to the MSB of the 8-bit register address in Figure 1, while bit D7 corresponds to the MSB of the 8 bits of data in the same Figure 1.
The MAX4823 consists of an 8-bit shift register and parallel latch controlled by SCLK and $\overline{\mathrm{CS}}$. The input to the shift register is an 8-bit word. Each data bit controls one of the eight outputs, with the most significant bit (D7) corresponding to OUT8, and the least significant bit (D0) corresponding to OUT1 (see Figure 2).

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

ADDRESS [A7...A0]	ACTIVE REGISTER
$\mathbf{0 0 h}$	Output Control Register-OUTR
$\mathbf{0 1 h}$	Power-Save Configuration Register-PS

Serial-Input Address Map

$\mathrm{D}_{\mathbf{7}}$	D_{6}	D_{5}	$\mathrm{D}_{\mathbf{4}}$	D_{3}	$\mathrm{D}_{\mathbf{2}}$	D_{1}	$\mathrm{D}_{\mathbf{0}}$
OUT_{8}	OUT $_{7}$	OUT $_{6}$	OUT $_{5}$	OUT $_{\mathbf{4}}$	OUT $_{3}$	OUT $_{\mathbf{2}}$	OUT $_{\mathbf{1}}$
MSB							LSB

Output Control Register-OUTR (Address = OOh)
Note: Setting D_{N} to logic 1 turns on output OUT ${ }_{N}+1$. Setting D_{N} to logic 0 , turns off OUT $_{N+1}$. Example: Setting $D_{2}=1$ turns on OUT $_{3}$.

$\mathbf{D}_{\mathbf{7}}$	$\mathbf{D}_{\mathbf{6}}$	$\mathbf{D}_{\mathbf{5}}$	$\mathbf{D}_{\mathbf{4}}$	$\mathbf{D}_{\mathbf{3}}$	$\mathbf{D}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$
\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	\mathbf{X}	$\mathbf{P S} 0$	$\mathbf{P S} 1$	PS2
MSB							LSB

Power-Save Configuration Register-PS (Address= 01h)

PSO	PS1	PS2	POWER-SAVE CONFIGURATION
0	0	0	Power-save is disabled (Default Operation)
0	0	1	Power-save is enabled. Vout set to 70% of $\mathrm{V}_{C C}$, typical after tps ms (see Note 1), causes IOUT_ to be reduced to approximately 30%, typical after tps ms.
0	1	0	Power-save is enabled. Vout set to 60% of $\mathrm{V}_{C C}$, typical after tps ms (see Note 1), causes IOUT_ to be reduced to approximately 40%, typical after tps ms.
0	1	1	Power-save is enabled. Vout set to 50% of $\mathrm{V}_{C C}$, typical after tps ms (see Note 1), causes IOUT_ to be reduced to approximately 50%, typical after tps ms .
1	0	0	Power-save is enabled. Vout set to 40% of $\mathrm{V}_{C C}$, typical after tps ms (see Note 1), causes IOUT_ to be reduced to approximately 60%, typical after tps ms.
1	0	1	Power-save is enabled. Vout set to 30% of V_{CC}, typical after tps ms (see Note 1), causes lout_ to be reduced to approximately 70%, typical after tps ms.
1	1	0	Power-save is enabled. VOUT set to 20% of V_{CC}, typical after tps ms (see Note 1), causes Iout_ to be reduced to approximately 80%, typical after tps ms.
1	1	1	Power-save is enabled. Vout set to 10% of $V_{C C}$, typical after tps ms (see Note 1), causes Iout_ to be reduced to approximately 90%, typical after tps ms.

Power-Save Configuration Options
Note 1: The time period tps is determined by the capacitor connected to PSAVE.

Figure 1. 16-Bit Register Map for MAX4822

When $\overline{C S}$ is low (MAX4822/MAX4823 device is selected), data at DIN is clocked into the shift register synchronously with SCLK's rising edge. Driving $\overline{C S}$ from low to high latches the data in the shift register (Figures 5 and 6).

DOUT is the output of the shift register. Data appears on DOUT synchronously with SCLK's falling edge and is identical to the data at DIN delayed by eight clock cycles for the MAX4823, or 16 clock cycles for the MAX4822. When shifting the input data, A7 is the first input bit in and out of the shift register for the MAX4822 device. D7 is the first bit in or out of the shift register for

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

MSB							LSB
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}
OUT_{8}	OUT $_{7}$	OUT $_{6}$	OUT $_{5}$	OUT $_{4}$	OUT $_{3}$	OUT $_{2}$	OUT $_{1}$

Note: Setting D_{N} to logic 1 turns on output OUT ${ }_{N+1}$. Setting DN to logic 0 turns off output OUT $N+1$. Example: Setting the $\mathrm{D}_{2}=1$ turns OUT_{3} on.

Figure 2. 8-Bit Register Map for MAX4823

A2	A1	A0	OUTPUT
Low	Low	Low	OUT1
Low	Low	High	OUT2
Low	High	Low	OUT3
Low	High	High	OUT4
High	Low	Low	OUT5
High	Low	High	OUT6
High	High	Low	OUT7
High	High	High	OUT8

Figure 3. Register Address Map for MAX4824/MAX4825

Figure 4. 3-Wire Serial-Interface Timing Diagram
the MAX4823 device. If the address AO.......A7 is not 00h or 01h, then the outputs and the PSAVE configuration register are not updated. The address is stored in the shift register only.
While $\overline{\mathrm{CS}}$ is low, the OUT_ outputs always remain in their previous state. For the MAX4823, drive $\overline{\mathrm{CS}}$ high after 8 bits of data have been shifted in to update the output state of the MAX4823, and to further inhibit data from entering the shift register. For the MAX4822, drive $\overline{\mathrm{CS}}$ high after 16 bits of data have been shifted in to update the output state of the MAX4822, and to further inhibit data from entering the shift register. When $\overline{\mathrm{CS}}$ is high, transitions at DIN and SCLK have no effect on the output, and the first input bit A7 (or D7) is present at DOUT.

For the MAX4822, if the number of data bits entered while $\overline{\mathrm{CS}}$ is low is greater or less than 16 , the shift register contains only the last 16 bits, regardless of when they were entered. For the MAX4823, if the number of data bits entered while $\overline{\mathrm{CS}}$ is low is greater or less than 8, the shift register contains only the last 8 data bits, regardless of when they were entered.

Parallel Interface (MAX4824/MAX4825)

The parallel interface consists of 3 address bits (AO, A1, A2) and one level selector bit (LVL). The address bits determine which output is updated, and the level bit determines whether the addressed output is switched on (LVL = high) or off (LVL = low). When CS is high, the address and level bits have no effect on the state of the outputs. Driving $\overline{\mathrm{CS}}$ from low to high latches

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

Figure 5. 3-Wire Serial-Interface Operation for MAX4822
level data to the parallel register and updates the state of the outputs. Address data entered after $\overline{\mathrm{CS}}$ is pulled low is not reflected in the state of the outputs following the next low-to-high transition on $\overline{\mathrm{CS}}$ (Figure 7).

SET/RESET Functions

The MAX4822-MAX4825 feature set and reset inputs that allow simultaneous turn-on or turn-off of all outputs using a single control line. Drive $\overline{\text { SET }}$ low to set all latches and registers to 1 and turn all outputs on. SET overrides all serial/parallel control inputs. Drive RESET low to clear all latches and registers and to turn all outputs off. $\overline{\text { RESET }}$ overrides all other inputs including $\overline{\text { SET }}$.

Power-On Reset

The MAX4822-MAX4825 feature power-on reset. The power-on reset function causes all latches to be cleared automatically upon power-up. This ensures that all outputs come up in the off or high-impedance state.

Applications Information

Daisy Chaining

The MAX4822/MAX4823 feature a digital output (DOUT) that provides a simple way to daisy chain multiple devices. This feature allows driving large banks of relays using only a single serial interface. To daisy chain multiple devices, connect all $\overline{\mathrm{CS}}$ inputs together, and connect the DOUT of one device to the DIN of another device (see Figure 8). During operation, a stream of serial data is shifted through the MAX4822/ MAX4823 devices in series. When $\overline{\mathrm{CS}}$ goes high, all outputs update simultaneously.
The MAX4822/MAX4823 can also be used in a slave configuration that allows individual addressing of devices. Connect all the DIN inputs together, and use
the $\overline{\mathrm{CS}}$ input to address one device at a time. Drive $\overline{\mathrm{CS}}$ low to select a slave and input the data into the shift register. Drive $\overline{\mathrm{CS}}$ high to latch the data and turn on the appropriate outputs. Typically, in this configuration only one slave is addressed at a time.

Power-Save Mode
The MAX4822/MAX4824 feature a unique power-save mode where the relay current, after activation, can be reduced to a level just above the relay hold-current threshold. This mode keeps the relay activated while significantly reducing the power consumption.
In serial mode (MAX4822), choose between seven current levels ranging from 30% to 90% of the nominal current in 10% increments. The actual percentage is determined by the power-save configuration register (Figure 1).
In parallel mode (MAX4824), the power-save current is fixed at 60% of the nominal current.

Power-Save Timer Every time there is a write operation to the device ($\overline{\mathrm{CS}}$ transitions from low to high), the MAX4822/MAX4824 start charging the capacitor connected to PSAVE. The serial power-save implementation is such that a write operation does not change the state of channels already in power-save mode (unless the write turns the channel OFF).
After a certain time period, tps (determined by the capacitor value), the capacitor reaches a voltage threshold that sets all active outputs to power-save mode. The tps period should be made long enough to allow the relay to turn on completely. The time period tps can be adjusted by using different capacitor values

＋3．3V／＋5V，8－Channel Relay Drivers with Fast Recovery Time and Power－Save Mode

connected to PSAVE．The value tPS is given by the fol－ lowing formula：

$$
\mathrm{tPS}=32 \times \mathrm{C}
$$

where C is in $\mu \mathrm{F}$ and tPS is in ms ．
For example，if the desired tps is 20 ms ，then the required capacitor value is $20 / 32=0.625 \mu \mathrm{~F}$ ．

Power－Save Mode Accuracy

The current through the relay is controlled by setting the voltage at OUT＿to a percentage of the VCC supply as specified under the Electrical Characteristics and in the register description．The current through the relay （IOUT）depends on the switch on－resistance，RON，in addition to the relay resistance R_{R} according to the fol－ lowing relation：

$$
\text { IOUT }=V_{C C} /\left(R_{O N}+R_{R}\right)
$$

The power－save，current－setting IPS depends on the fraction α of the supply voltage VCC that is set by the loop depending on the following relation：

$$
\mathrm{IPS}=V_{C C}-\left(\alpha \times V_{C C}\right) / R_{R}
$$

Therefore：

$$
\text { IPS / IOUT }=(1-\alpha) \times(1+\text { RON / RR })
$$

This relation shows how the fraction of reduction in the current depends on the switch on－resistance，as well as from the accuracy of the voltage setting（ α ）．The higher the RON with respect to RR，the higher the inaccuracy． This is particularly true at low voltage when the relay resistance is low（less than 40Ω ）and the switch can account for up to 10% of the total resistance．In addi－ tion，when the supply－voltage setting（ α ）is low（10\％or 20% ）and the supply voltage（ V_{CC} ）is low，the voltage drop across the switch（IOUT x RON）may already exceed，or may be very close to，the desired voltage－ setting value．

Daisy Chaining and Power－Save Mode

In a normal configuration using the power－save feature， several MAX4822s can be daisy chained as shown in Figure 9．For each MAX4822，the power－save timing tpD（time it takes to reduce the relay current once the relay is actuated）is controlled by the capacitor con－ nected to PSAVE．
An alternative configuration that eliminates the PSAVE capacitors uses a common PSAVE control line driven by an open－drain n－channel MOSFET（Figure 10）．In this con－ figuration，the PSAVE inputs are connected together to asynchronously control the power－save timing for all the MAX4822s in the chain．The $\mu \mathrm{C} / \mu \mathrm{P}$ drives the n－channel MOSFET low for the duration of a write cycle to the SPI chain，plus some delay time to allow the relays to close．

Figure 6．3－Wire Serial－Interface Operation for the MAX4823

Figure 7．Parallel－Interface Timing Diagram
（This time is typically specified in the relay data sheet．） Once this delay time has elapsed，the n－channel MOSFET is turned off，allowing the MAX4822＇s internal $35 \mu \mathrm{~A}$ pullup current to raise PSAVE to a logic－high level，activating the power－save mode in all active outputs．

MOSFET Selection
In the daisy－chain configuration of Figure 10，the n－channel MOSFET drives PSAVE low．When the n－channel MOSFET is turned off，PSAVE is pulled high by an internal $35 \mu \mathrm{~A}$ pullup in each MAX4822，and the power－save mode is enabled．Because of the paralleled PSAVE pullup currents，the required size of the n－channel MOSFET depends upon the number of MAX4822 devices in the chain．Determine the size of the n－channel MOSFET by the following relation：

$$
\text { RoN < } 1428 / N
$$

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

Figure 8. Daisy-Chain Configuration

Figure 9. Daisy-Chained MAX4822s with a Capacitor Connected to PSAVE
where N is the total number of MAX4822 devices in a single chain, and RON is the on-resistance of the n -channel MOSFET in $\Omega \mathrm{s}$.
For example, if $\mathrm{N}=10$:

$$
\text { RON }<142 \Omega
$$

An n-channel MOSFET with RON less than 142Ω is required for a daisy chain of 10 MAX4822 devices.

Inductive Kickback Protection with Fast Recovery Time
The MAX4822-MAX4825 feature built-in inductive kickback protection to reduce the voltage spike on OUT_ generated by a relay's coil inductance when the output is suddenly switched off. An internal Zener clamp allows the inductor current to flow back to ground. The Zener configuration significantly reduces the recovery time (time it takes to turn off the relay) when compared to protection configurations with just one diode across the coil.

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

Figure 10. Daisy-Chaining MAX4822s with a PSAVE Connected to an n-Channel MOSFET

TRANSISTOR COUNT: 5799
PROCESS: BiCMOS

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

 MAX4824/MAX4825 Functional Diagram (ParalleI Interface)

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

\qquad Pin Configurations

TOP VIEW

+3.3V/+5V, 8-Channel Relay Drivers with Fast Recovery Time and Power-Save Mode

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

